

Mott insulator bilayers

At the interface between electron and hole doped Mott insulators

Marcel Hoek¹, Louk Rademaker², Francesco Coneri¹, Denise Leusink¹, Jan Zaanen², Hans Hilgenkamp^{1,2}

m.hoek@utwente.nl & rademaker@lorentz.leidenuniv.nl ¹MESA+ institute for Nanotechnology, University of Twente ²Institute-Lorentz, University of Leiden Bristol – ICE2UK – 2012

Sample preparation

Pulsed Laser Deposition (PLD)

- Nd_{2-x}Ce_xCuO₄ and La_{2-x}Sr_xCuO₄
- LSAT [(LaAlO₃)_{0.3}-(Sr₂AlTaO₆)_{0.7}] substrates
- Oxygen or vacuum anneal

n-type (NCCO)

0.15

electron doping

AF

Temperature

p-type (LSCO)

SC

0.15

hole doping

n-type character is retained

Nd_{2-x}Ce_xCuO₄ oxygen treatment

NCCO/LSCO multilayer

(La_{1.91}Sr_{0.09}CuO₄ (50nm)/Nd_{1.9}Ce_{0.1}CuO₄ (50nm))x2 on LSAT

 $LSAT = (LaAIO_3)_{0.3} - (Sr_2AITaO_6)_{0.7}$

NCCO/LSCO multilayer

roughness 1.3 nm, 6nm holes

p/n contacts 4.2 K

p/n contacts 4.2K

Conclusions

Combining electron and hole doped cuprates

Interplay of electrons and holes

Dream: Exciton condensation

• Counterflow superfluidity

Exciton superfluids

• Simple description with GL theory

$$F[\Psi] = \int d^2x \left[\alpha |\Psi|^2 + \frac{1}{2}\beta |\Psi|^4 + \frac{\hbar^2}{2m^*} (\nabla |\Psi|)^2 + \frac{1}{2m^*} \left[\hbar \vec{\nabla} \phi - e\vec{d} \times \vec{B} \right]^2 |\Psi|^2 + d\frac{B^2}{2\mu_0} \right]$$

Magnetic field induces current

electron layer

Unconventional flux quantization

Excitons in doped Mott insulators?

Half-filled antiferromagnetic background

Frustrated excitons

Frustrated excitons: Theory

• Spin background: bilayer Heisenberg

$$H_J = J \sum_{\langle ij \rangle} \left(\vec{S}_{1,i} \cdot \vec{S}_{1,j} + \vec{S}_{2,i} \cdot \vec{S}_{2,j} \right) + J_{\perp} \sum_i \vec{S}_{1,i} \cdot \vec{S}_{2,i}$$

• Exciton hopping:

$$H_t = -t \sum_{\langle ij \rangle} |E_j\rangle \left(|0 \ 0\rangle_i \langle 0 \ 0|_j + \sum_m |1 \ m\rangle_i \langle 1 \ m|_j \right) \langle E_i|$$

• Compute exciton spectrum with LSW-SCBA

Frustrated single exciton: Ising confinement

Frustrated single exciton: YBCO results

LR, Wu, Hilgenkamp & Zaanen, EPL 97, 27004 (2012); and arXiv:1202.3616.

Finite exciton density

Current work: Antiferromagnetism + Excitons

Bonus: no fermion signs!

Subtle issues:

- Inhomogeneous phases
- Exciton-exciton dipole repulsion
- Frustration of excitons with spins
- Canonical ensemble

Mesaros, et al. Science 333, 426 (2011)